Structure Preserving Low-Rank Representation for Semi-supervised Face Recognition
نویسندگان
چکیده
Constructing an informative and discriminative graph plays an important role in the graph based semi-supervised learning methods. Among these graph construction methods, low-rank representation based graph, which calculates the edge weights of both labeled and unlabeled samples as the low-rank representation (LRR) coefficients, has shown excellent performance in semi-supervised learning. In this paper, we additionally impose twofold constraints (local affinity and distant repulsion) on the LRR graph. The improved model, termed structure preserving LRR (SPLRR), can preserve the local geometrical structure but without distorting the distant repulsion property. Experiments are taken on three widely used face data sets to investigate the performance of SPLRR and the results show that it is superior to some state-of-the-art semi-supervised graphs.
منابع مشابه
Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning
Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labele...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملGabor Feature Based Face Recognition Using Supervised Locality Preserving Projection
This paper introduces a novel Gabor-based supervised locality preserving projection (GSLPP) method for face recognition. Locality preserving projection (LPP) is a recently proposed method for unsupervised linear dimensionality reduction. LPP seeks to preserve the local structure which is usually more significant than the global structure preserved by principal component analysis (PCA) and linea...
متن کاملConstraint-based sparsity preserving projections and its application on face recognition
Aiming at the deficiency of supervise information in the process of sparse reconstruction in Sparsity Preserving Projections (SPP), a semi-supervised dimensionality reduction method named Constraint-based Sparsity Preserving Projections (CSPP) is proposed. CSPP attempts to make use of supervision information of must-link constraints and cannot-link constraints to adjust the sparse reconstructiv...
متن کاملSemi-supervised Neighborhood Preserving Discriminant Embedding: A Semi-supervised Subspace Learning Algorithm
Over the last decade, supervised and unsupervised subspace learning methods, such as LDA and NPE, have been applied for face recognition. In real life applications, besides unlabeled image data, prior knowledge in the form of labeled data is also available, and can be incorporated in subspace learning algorithm resulting in improved performance. In this paper, we propose a subspace learning met...
متن کامل